Skip to main content

Appendix III: Log-Normal and Log-Laplace

Appendix III: Log-Normal and Log-Laplace

The following section provides detailed formulas for growth distributions, focusing on the log-normal and log-Laplace distributions.

Normal Distribution

The formula for a normal distribution is given by:

N(μ,σ^,x)=12πσ^2exp((xμ)22σ^2)N(\mu, \hat \sigma, x) = \frac{1}{\sqrt{ 2 \pi \hat \sigma^2 }} \exp\left( - \frac{ (x - \mu)^2 } {2 \hat \sigma^2} \right)

Lognormal Distribution

The lognormal distribution can be expressed as:

10N(μ,σ^,x)=eN(m,V,ln10(x))10^{N(\mu, \hat \sigma, x)} = e^{N(m, \sqrt{V}, \ln10(x))}

where:

  • m=μln(10)m = \mu \ln(10)
  • V=σ2ln2(10)V = \sigma^2 \ln^2(10)

Additionally, D(μ,σ^;n)D(\mu, \hat \sigma; n) denotes a draw of nn elements from the distribution D(μ,σ^)D(\mu, \hat \sigma).

Moments of a Log-Normal

The expected value, or first moment, is:

E[10N(μ,σ^,x)]=em+V/2=10μ+σ2ln(10)/2E[10^{N(\mu, \hat \sigma, x)}] = e^{m + V/2} = 10^{\mu + \sigma^2 \ln(10) / 2}

In general, the k-th moment is:

E[10kN(μ,σ^,x)]=exp(k22σ2ln2(10)+kμln(10))=10(k22σ2ln(10)+kμ)E[10^{k N(\mu, \hat \sigma, x)}] = \exp\left( \frac{k^2}{2}{\sigma}^{2} \ln^2(10) + k \mu \ln(10)\right) = 10^{\left( \frac{k^2}{2}{\sigma}^{2} \ln(10) + k \mu \right)}

Expectation Calculation

If the microshocks probability density function (pdf) is Gaussian, i.e., p(t)=exp((tμ)2/(2σ2))/2πσp(t)=\exp(- (t - \mu)^2/(2 \sigma^2))/\sqrt{2 \pi} \sigma, the expectation of 10kt10^{k t} is:

E[10kt]=p(t)10ktdt=12πσexp((tμ)22σ2+ln(10)kt)dtE[10^{k t}] = \int p(t) 10^{k t} dt = \frac{1}{\sqrt{2 \pi} \sigma} \int \exp\left( \frac{- (t - \mu) ^2}{2 {\sigma}^2} + \ln(10) k t \right) dt

Completing the square in the exponential, we have:

E[10kt]=exp(kμln(10)+k22σ2ln2(10))E[10^{k t}] = \exp\left( k \mu \ln(10) + \frac{k^2}{2}{\sigma}^{2} \ln^2(10) \right)

Special Cases

For a normal distribution tt:

E[10t]=10μ+12σ^2ln(10)10μ(1+12σ^2ln2(10))E[10^t] = 10^{\mu + \frac{1}{2} \hat \sigma^2 \ln(10)} \approx 10^{\mu} \left(1 + \frac{1}{2} \hat \sigma^2 \ln^2(10)\right) E[102t]=102μ+2σ^2ln(10)E[10^{2t}] = 10^{2 \mu + 2 \hat \sigma^2 \ln(10)}

Variance Calculation

The variance, defined as var[10N()]=E[102N()]E2[10N()]var[10^{N(\cdot)}] = E[10^{2 N(\cdot)}] - E^2[10^{N(\cdot)}], is:

E[102t]=102μ+σ^2ln(10)(10σ^2ln(10)1)102μ((σ^ln(10))2+o(σ^4))E[10^{2t}] = 10^{2 \mu + \hat \sigma^2 \ln(10)} (10^{\hat \sigma^2 \ln(10)} - 1) \approx 10^{2 \mu} \left( (\hat \sigma \ln(10))^2 + o(\hat \sigma^4) \right)

This section provides a comprehensive understanding of the moments and variance of log-normal distributions, which are crucial for various statistical analyses.