Skip to main content

Moments of a Log-Laplace

Moments of a Log-Laplace

The Laplace distribution is defined as:

L(μ,b,x)=12bexp(xμb)=12σ^exp(xμσ^/2)L(\mu, b, x) = \frac{1}{2b} \exp\left(-\frac{|x - \mu|}{b}\right) = \frac{1}{\sqrt{2} \hat{\sigma}} \exp\left(-\frac{|x - \mu|}{\hat{\sigma}/\sqrt{2}}\right)

The parameters σ^=2b\hat{\sigma} = \sqrt{2} b are proportional to each other and are measures of the width of the distribution. Using bb is a common convention, but σ^\hat{\sigma} has the benefit of being the actual standard deviation observed.

The log-Laplace in base 10 is expressed as 10L(μ,σ^,x)10^{L(\mu, \hat{\sigma}, x)}. A good reference for this is in Kozubowski (2003).

To derive the first moment in the simplified case of a symmetric shocks distribution and mean zero, we compute the expected value E[10t]E[10^t] when tt is distributed as a Laplace.

Derivation of the First Moment

To compute E[10t]E[10^t], we separate the negative and positive expressions for the Laplace shocks PDF:

E[10t]=0p(t)10tdt+0p(t)10tdtE[10^t] = \int\limits_{-\infty}^{0} p(t) 10^t \, dt + \int\limits_{0}^{\infty} p(t) 10^t \, dt

Knowing the expression of the indefinite integral of 10tp(t)10^t p(t), we evaluate it at the integration limits (Barrow's rule):

10texp(±t/b)/(2b)dt=10texp(±t/b)/(2(bln(10)±1))\int 10^t \exp(\pm t/b)/(2b) \, dt = 10^t \exp(\pm t/b)/(2 (b \ln(10) \pm 1))

Thus, the expected value is:

E[10t]=12(bln(10)+1)[exp(t/b)10t]0+12(bln(10)1)[exp(t/b)10t]0E[10^t] = \frac{1}{2 (b \ln(10) + 1)} \left[ \exp(t/b) 10^t \right]_{-\infty}^{0} + \frac{1}{2 (b \ln(10) - 1)} \left[\exp(-t/b) 10^t \right]_{0}^{\infty}

Using 10t=eln(10)t10^t = e^{\ln(10) t}, this simplifies to:

E[10t]=12(bln(10)+1)[exp([1/b+ln(10)]t)]0+12(bln(10)1)[exp([1/b+ln(10)]t)]0E[10^t] = \frac{1}{2 (b \ln(10) + 1)} \left[ \exp([1/b + \ln(10)] t) \right]_{-\infty}^{0} + \frac{1}{2 (b \ln(10) - 1)} \left[ \exp([-1/b + \ln(10)] t) \right]_{0}^{\infty}

The mean will diverge unless the exponentials are zero at infinity, requiring σ^<2/ln(10)0.61\hat{\sigma} < \sqrt{2}/\ln(10) \approx 0.61. Theoretical mean values diverge upwards when approaching this σ^\hat{\sigma} level. Experiments show an 'explosion' upwards for σ^\hat{\sigma} above this level, although they are finite due to a bounded number of agents (NN).

Evaluating the primitive at the limits gives:

E[10t]=12(bln(10)+1)12(bln(10)1)=11(bln(10))2E[10^t] = \frac{1}{2 (b \ln(10) + 1)} - \frac{1}{2 (b \ln(10) - 1)} = \frac{1}{1 - (b \ln(10))^2}

If the Laplace shocks are centered at μ0\mu \neq 0, then the mean is multiplied by 10μ10^\mu:

E[10t]=10μ1(bln(10))2=10μ112σ2ln2(10)E[10^t] = \frac{10^\mu}{1 - (b \ln(10))^2} = \frac{10^\mu}{1 - \frac{1}{2}\sigma^2 \ln^2(10)}

General Expression for Moments

An expression for the moments of a log-Laplace, generalizing to possible asymmetries, is given by Kozubowski (2003):

E[10kt]=pL(t)10ktdt=10kμαβ(αkln(10))(β+kln(10))E[10^{k t}] = \int p_L(t) 10^{k t} \, dt = 10^{k \mu} \frac{\alpha \beta}{(\alpha - k \ln(10)) (\beta + k \ln(10))}

where α\alpha and β\beta represent possibly asymmetric slopes on both sides of the mean. For the symmetric case, use α=β=1/b\alpha = \beta = 1/b, leading to:

E[10kt]=10kμ11(kbln(10))2E[10^{k t}] = 10^{k\mu} \frac{1}{1 - (k b \ln(10))^2}

The parameter bb relates to the standard deviation of a Laplace distribution (σ^\hat{\sigma}) as b=σ^/2b = \hat{\sigma}/\sqrt{2}.

The second moment is:

E[102t]=102μ11(σ^ln(10))2/2E[10^{2 t}] = 10^{2 \mu} \frac{1}{1 - (\hat{\sigma} \ln(10))^2/\sqrt{2}}

From here, the variance var[10L()]=E[102L()]E2[10L()]var[10^{L(\cdot)}] = E[10^{2 L(\cdot)}] - E^2[10^{L(\cdot)}] is:

var[10L()]=102μ(112σ^4(4σ^2)2)var[10^{L(\cdot)}] = 10^{2\mu} \left( \frac{1}{1 - 2 \hat{\sigma}} - \frac{4}{(4 - \hat{\sigma}^2)^2} \right)

In the limit of small micro fluctuations:

var[10L()]102μ(σ^2+134σ^4+152σ^6+o(σ^8))var[10^{L(\cdot)}] \approx 10^{2 \mu} \left( \hat{\sigma}^2 + \frac{13}{4} \hat{\sigma}^4 + \frac{15}{2} \hat{\sigma}^6 + o(\hat{\sigma}^8) \right)